Line Trends

Overview

The Trend Viewer is a powerful UI element used to visualize live data or historical time-series values. It is ideal for monitoring processes, comparing measurements over time, and exporting evaluations.

Note: The writing of values (i.e., logging to a database) is done externally—typically in CODESYS using a provided library.
The reading and visualization happens client-side within the HMI using PLCVisu.

Key Features

  • Display of real-time or logged data
  • Zooming & scrolling across time periods
  • Support for multiple datasets and Y-axes
  • Export options for current view or full dataset

Note: "Trends" appear in two places:
As a UI element in Pages (to display existing trend views), and as a dedicated section in the sidebar menu (Burger menu → Trends).
Only via the sidebar can you fully configure a trend, connect it to a database, and adjust all settings.
In Pages, you can only select and display a preconfigured trend.

UI Sections & Configuration

General

Field Description
Name Internal name of the trend element
Label Optional display label; supports tokens like {{LineTrend}}
Show Lines Toggle the graph lines on or off
Show Labels Toggle numeric labels on data points

X-Axis

Field Description
X-Axis Label Label for the horizontal axis
X-Axis Format Format of the time values:
- Unix Timestamp (raw)
- Human readable (e.g. 12:45 PM)

Toolbar Options

Option Function
Interval Picker Allows users to choose a time range (live, last hour, custom)
Export Current View Exports only the visible time range
Export Full Data Exports the entire dataset
Configure Datasets Allows enabling/disabling individual datasets
Reset Button Resets zoom, axes, and dataset visibility

Interpolation

Field Description
Active Enables interpolation
Max Points Maximum number of interpolated data points
Interpolation Type Selectable interpolation algorithm:
– [code_block_3]
– [code_block_4]
– [code_block_5]
– [code_block_6]
– [code_block_7]

Other Options

Option Function
Legend Displays a legend with dataset names
Tooltips Enables value display on hover or touch
Extended Touch Features Enables advanced touch interactions
Zoom Allows zooming and panning in the graph

Y-Axes

  • Multiple Y-axes can be defined
  • Each axis includes:
    • Name, Label
    • Color
    • Min / Max Range
    • Position ([code_block_8] or [code_block_9])
    • Measurement Type & Display Unit

Datasets

  • Each dataset is an individual data signal to be visualized.
  • Dataset properties include:
    • Name, Label
    • Color
    • Linked Y-Axis
    • Measurement Type
    • Base Unit
    • Visibility
    • Enabled (✓)

Practical Use Cases

1. Live Machine Monitoring

Display key performance metrics from machines or sensors in real time.

  • Example: Motor speed (RPM), temperature, torque
  • Data source: Live PLC values (e.g. via CODESYS + PLCVisu library)

2. Environmental Logging

Visualize and export long-term sensor trends (e.g., from building automation or IoT).

  • Example: Room temperature, CO₂ levels, humidity
  • Data source: Logged historical data in a database

3. Process Quality Evaluation

Monitor thresholds and limits over time for process optimization or safety analysis.

  • Example: Batch process pressure curve with max/min tolerance bands
  • Combine with alarm thresholds via visual cues

Data Flow Logic

Data Logging

  • Not handled by the HMI directly
  • Requires setup in CODESYS, Node-RED, or another backend system
  • PLCVisu provides libraries to assist in pushing values into a database

Data Reading (Visualization)

  • HMI loads and displays values dynamically
  • X-axis timestamps must match the format expected ([code_block_10] or Human readable)
  • Datasets can be toggled or filtered using UI controls

Tips for Best Use

  • Use interpolation when displaying a large amount of data over long timeframes
  • Set consistent colors and axis labels across trends for clarity
  • Export trends regularly for documentation or traceability

Limitations

  • Requires external system to log data to a database
  • High-frequency live updates may impact UI performance on low-end hardware
  • Interpolation simplifies data but may smooth out important spikes
Human readable
Unix Timestamp
{{LineTrend}}